Benefits Of 5G Wireless

While 5G remains an imprecise term today, key objectives for the development of the advances required have become clear. These are as follows:

  • Enhanced throughput – As is the case with Wi-Fi, major advances in cellular are first and foremost defined by new upper-bound throughput numbers. The magic number here for 5G is in fact a floor of 1 Gbps, with numbers as high as 10 Gbps mentioned by some. However, and again as is the case with Wi-Fi, it’s important to think more in terms of overall individual-cell and system-wide capacity. We believe, then, that per-user throughput of 50 Mbps is a more reasonable – but clearly still remarkable – working assumption, with up to 300 Mbps peak throughput realized in some deployments over the next five years. The possibility of reaching higher throughput than that exceeds our planning horizon, but such is, well, possible.
  • Reduced latency – Perhaps even more important than throughput, though, is a reduction in the round-trip time for each packet. Reducing latency is important for voice, which will most certainly be all-IP in 5G implementations, video, and, again, in improving overall capacity. The over-the-air latency goal for 5G is less than 10ms, with 1ms possible in some defined classes of service.
  • Advances in management and OSS – Operators are always seeking to reduce overhead and operating expense, so enhancements to both system management and operational support systems (OSS) yielding improvements in reliability, availability, serviceability, resilience, consistency, analytics capabilities, and operational efficiency, are all expected. The benefits of these will, in most cases, however, be transparent to end-users.
  • Increased mobility – Very-high-speed user mobility, to as much as hundreds of kilometers per hour, will be supported, thus serving users on all modes of transportation. Regulatory and situation-dependent restrictions – most notably, on aircraft – however, will still apply.
  • Improved security – As security remains the one aspect of IT where no one is ever done, enhancements to encryption, authentication, and privacy are expected. It would not be surprising to see identity management (IDM) solutions along the lines of those now at work in many organizations available from at least a few carriers. Current IDM suppliers as well might be more than mildly interested in extending their capabilities to 5G services purchased by enterprises.
  • New spectrum – It is expected that frequencies in the so-called millimeter-wave bands above 30GHz will see service in at least some 5G deployments. Both licensed and unlicensed spectrum at these frequencies is available in many parts of the world. MM wave frequencies are often appropriate to small cells since they require smaller and less obtrusive antennas, and the inherent signal directionality can multiply spectral efficiency. The core disadvantages for MM waves are less applicability to traditional larger cells along with poor object (e.g., buildings) penetration, but such can again be advantages in terms of frequency reuse. Regardless, more spectrum is required given the throughput and capacity objectives that justify 5G development and deployment – present spectral allocations will most certainly not suffice even with the ability to aggregate smaller blocks of spectrum.
  • New enabling technologies – We expect to see higher-order MIMO implementations, sometimes described as “massive” with, for example, 16-64 streams, more aggressive modulation and channel coding, improved power-utilization efficiency, and related advances. Small cells will see frequent application, and the days of large cell towers may be numbered in more densely populated areas. Current trends otherwise at work in networks today, include SDN and NFV, will also see application in 5G, with much infrastructure implemented within cloud-based services. 5G will likely require no major advances in chip or manufacturing technologies, and device power consumption will likely benefit from more limited geographic range even as higher clock rates take a small toll here. Still, much work remains in terms of both technical and feasibility analysis as well as cost, but we see no showstoppers on the horizon. There is no danger of producing another WiMAX that offers marketing hype with no clear advantages over the previous generation, and the overall level of technical risk is low. Perhaps the greatest challenge is schedule slip, as the complex nature of the systems engineering that is required needs more time than many expect.
  • Universal application support – 5G as a wireline replacement will have to support every class of traffic and every conceivable device, from broadcast-quality video distribution to telemetry, implantable medical devices, augmented and virtual reality, and advanced interactivity and graphics – and not just for gaming. The list also includes connected and autonomous cars, remotely-piloted vehicles (drones), public safety, building and municipal automation/monitoring/control, and disaster relief. including relocatable infrastructure with moving cells and support for dynamic wireless meshing. Also in the mix are robotics and IoT devices tolerant of limited data throughput and highly-variable latency. We expect literally tens of billions of 5G devices to be deployed over the next decade or so, so the scale of both the challenge and the demand is clear.
  • Industry growth – Finally, carriers, operators, and equipment vendors of both infrastructure and subscriber devices simply require the deployment of new technologies with quantifiable end-user-visible benefits from time to time in order to continue to grow their businesses. New subscriber units alone cannot accomplish this goal.

In short, 5G is a business opportunity being designed and implemented to provide all of the communication capabilities and performance we expect from a wireline network. Getting to that point, given all of the requirements above, won’t be easy, quick, or inexpensive.

Enabling the Elastic Edge of Today’s Connected Enterprise

The Elastic Edge of today’s Connected Enterprise requires the wide-area network (WAN) to be more reliable, agile, scalable, automated and secure than ever. Cradlepoint’s software-defined network solutions enable the next-generation WAN for the Connected Enterprise.

UN steps in to end marketing war over what 5G means

With mobile operators’ marketing departments already throwing around claims about their 5G services, the United Nations is weighing in with its definition of what qualifies a network as next-generation.

Verizon Wireless will begin delivering “5G” service to select users in 11 U.S. cities in mid-2017, even though some places don’t yet have access to 4G. And at the Mobile World Congress 2017 trade show in Barcelona, companies including Intel, Qualcomm and Ericsson will be promoting their moves towards 5G.

But what marks the difference between one generation of mobile technology and the next?

Read the entire article at Network World

10 Critical Network Security Needs in 2017

How to Keep Up With Best Practices for Protecting Critical Information

As always, 2017 promises to be a year of security challenges among network administrators and security specialists. The ever-expanding presence of workforce mobility, the Internet of Things, and more makes keeping up with the latest security best practices as important as ever.

Here are 10 important network security needs in 2017:

Change your default passwords. Network manufacturers usually ship devices with default passwords. If you still haven’t changed the default password, your network is vulnerable to hackers.

Begin using multi-factor authentication. With multi-factor authentication, even attackers armed with stolen usernames and passwords wouldn’t have enough information to log in. Layered network security practices such as multi-factor authentication mitigate the risk of data breaches.

Implement business continuity plans that include a solid backup strategy. More than $300M in ransomware payments were made last year, and properly tested backups can be your best defense.

Deploy Parallel Networks to protect sensitive data. Instead of complex configurations, organizations can easily ensure excellent security of high-risk information through air-gapped “Parallel Networks.” This physical separation prevents would-be attackers from pivoting from one compromised device to servers and networks that hold sensitive data.

Schedule penetration testing on a regular basis. Use pen testing to determine whether and how a malicious user can gain unauthorized access to assets that affect the fundamental security of your system, files, logs, and/or cardholder data. Pen testing also can confirm that the applicable controls required in PCI DSS — such as scope, vulnerability management, methodology, and segmentation — are in place.

Adopt zero-trust networking principles. Through SDN and network virtualization, Cradlepoint NetCloud Enginemakes zero-trust WAN possible by microsegmenting the network at the site, departmental, or even user and device levels. This practice quarantines attack attempts once they’re inside the network’s perimeter.

Implement intrusion prevention and detection systems (IPS/IDS). Threat management is important for any IT team, and especially for those handling sensitive information and Point-of-Sale (POS) systems. IPS/IDS defends against evasion attacks, protects key data, and improves network availability.

Simplify your Mobile Device Management. Traditional Mobile Device Management (MDM) software relies on complex, clunky VPN architectures. Deploying a virtual overlay network that seamlessly works within your legacy infrastructure streamlines and simplifies MDM. With no need for head-end hardware, IT teams can give employees access to essential files and applications while also quarantining their mobile devices from the rest of the network.

Extend Active Directory servers to the cloud. Active Directory (AD) is the foundation of enterprise security, ensuring fast and reliable authentication, password compliance, DNS, and more. Today you can use the cloud to extend AD domain services to remote users everywhere, fostering a persistent, LAN-like experience that stays on without user interaction.

Utilize port scanning to understand what you are exposing to potential attackers and lock down unused ports. Open ports essentially are open on-ramps to your network.

Building Your WiFi Network

If you are building or considering building your Wi-Fi network, our tutorial will help you realize the most efficient, reliable, secure and extensible solution for your business. Download our Wi-Fi tutorial to help you plan and select the best Wi-Fi for your business.

Our tutorial contains crucial subjects that will help you drive a successful Wi-Fi project. One that is capable of evolving with your business needs for the next 5 years. Some of the questions covered include:

  • How many access points do you need?
  • Do you need a controller or not?
  • How many users can each access point support?
  • How will you power your access points?
  • Do you need a single or dual-band radio solution?
  • How can you plan for future growth?
  • What is the value of a site survey?

We hope you find this tutorial a valuable tool in your selection process. Since 1968 Telspan has provided organizations like yours with complete telecommunications solutions. Telspan looks at your business and designs a system that operates the way you need it to. By combining system installation, maintenance, coordination and consultative services, we create a communications solution that fits your business and its changing communications requirements.

If you would like more details on what communications system is best for you please call us at 860-761-1411.